XIII Congreso de Ingeniería del Transporte (CIT 2018)

Suitability Testing of LiDAR Processing Software aimed at 3-D Sight Distance Estimations

Keila González-Gómez,¹ María Castro ¹

¹Departamento de Ingeniería Civil: Transporte y Territorio

E.T.S.I. Caminos, Canales y Puertos

Universidad Politécnica de Madrid.

Introduction

Sight distance estimations operational roads

Introduction

- On Service roads surroundings are dynamic
- Off site 3D estimations make use of accurate road representations
- Mobile Lidar -->" A tool in the toolbox"

- Massive data
- GeomaticsKnowledge
- Several software
 suits when on
 house
 processing

- Highly accurate and dense 3D data;
 1,000,000 pps
- Productivity
- Deployment

Introduction

ALS MLS / TLS

Scan configuration

Crop

Project / Transform

12.7388 -45.3612 -0.0256 5.0290 0 0 0 0 12.8169 -45.3612 -0.0264 4.8362 0 1 0 0 12.8950 -45.3612 -0.0271 4.8362 0 2 0 0

Goals

Identify ASD tasks required --> Input data

 Evaluate selected software on providing specific / functionalities --> Completeness

Evaluate software performance --> Resources

Statistical Analysis of ASD results from data

Background

- Literature on ASD utilizing Geospatial representations of roads
- Deliverables Models or directly on Point cloud
- Line-of Sight-algorithms

Models:

Raster or vector

Completeness vs Simplification

Digital Terrain or Digital Surface

Software Selection Process

LiDAR derived → Geospatial representation → GIS, CAD, Road, ...

Useful for → Civil engineering → Transportation applications + GIS tasks

Widespread, Mature, Interoperable, Load Point size, Coordinate Reference System, Skills required

3DReshaper

Case Study

- Rural
- 4 Million points
- IP-S2
- Suitability

- Rural
- 120 Million points
- IP-S3
- Performance

Evaluation

Suitability: Comparing required to completed

Data Import and Export

Point Cloud decimation

Noise Removal

Filtering & classification

Modelling

Feature extraction

- Efficiency: Behavior & Capacity
- Statistical: Analysis of sight distance results obtained

Results and discussion: Suitability

- Data import and export: I/O LiDAR formats WMS, imagery, Polylines.
- Point cloud decimation → Clever & non Clever options →
- Noise Removal → Specifying isolated distance,
 manually, outliers.... Vehicle filtering less straight
 forward for MMS data.

Results and discussion: Suitability

• Filtering and classification → Black box algorithms make harder to find more suitable; Parameters →:

- Adaptive TIN
- Morphologic
- Terrain type
- Statistical
- Modelling
- Feature extraction

Software	Parameters required
3DReshaper	Terrain Type
Carlson Point Cloud	Varies depending on the method
	selected (Grid or Profile)
FUSION	Cell size
Global Mapper	Curvature deviations, Height
	departure from local mean,
	distinctive parameter information
	and extern files
LAStools	Terrain Type, granularity
MARS	Varies depending on the
	algorithm selected
MDTopX	Terrain Type, distinct parameter
	information
	and extern files

Results and discussion: Performance

Loading:

Capacity: 240 all but MDtopX

Results and discussion: Suitability

Task performance:

Results and discussion: Statistics

Mann–Whitney–Wilcoxon in pairs of two:

No significant differences obtained results of sight distance

Conclusions

- Mobile Lidar -->" A tool in the toolbox"
- Most tasks are provided → several MMS transportation applications share workflow
- *I/O .las format → interoperability
- Connect or overlay reference information adds value to datasets

Conclusions

- Classification & Filtering → required more knowledge
 from users & good understanding of LiDAR and dataset
- Straightforward software allows staff with little formation to carry out complete workflows
- Ongoing performance & capacity improvements
- Statistical differences of sight distance

Acknowledgements

Spanish Ministry of Economy and Competitiveness (MINECO)

European Regional Development Fund (FEDER)

Research Project TRA2015-63579-R (MINECO/FEDER)

XIII Congreso de Ingeniería del Transporte (CIT 2018)

Suitability Testing of LiDAR Processing Software aimed at 3-D Sight Distance Estimations

Keila González-Gómez,¹ María Castro ¹

¹Departamento de Ingeniería Civil: Transporte y Territorio

E.T.S.I. Caminos, Canales y Puertos

Universidad Politécnica de Madrid.

