International Conference on Traffic and Transport Engineering ICTTE 2018

Evaluating 3-D sight distance at urban intersections using a LiDAR-based model and considering multiple users

Keila González-Gómez,¹ Luis Iglesias-Martínez,¹ Roberto Rodríguez-Solano,¹ María Castro¹

¹ Universidad Politécnica de Madrid

Introduction

- At-grade urban intersections are considered to be complex due to their:
 - Multiple road users \rightarrow Reciprocal visibility
 - Conflicting movements → Early perception
 - High traffic volumes → Safe accommodation
 - Dynamic environ \rightarrow Acknowledged

Correct functioning requires adequate ISD and SSD

- Urban environs changes might alter design ASD
- ■LiDAR-based systems provide accurate representations of the road scene → allowing 3-D analyses

Background

- Authors reflected 2-D approaches could misestimate ASD
- Some 3-D approaches make use of geospatial data
- Digital models are used to portray road geometry and elements
- Widespread DSM's formats show one elevation per (x,y)

Procedure

- Repeated launching of line-of-sights using GIS tools
- **Requires:**
 - Object and target locations \rightarrow Trajectory
 - Road geometry definition \rightarrow DTM
 - Roadside obstructions \rightarrow 3-D objects

Trajectory

Digital Terrain Model Aboveground elements

Case study

- 3-way raised-channelized skewed intersection
- Posted speed limits of 40 km/h university district

Evaluation goals

 Assessment of SSD and ISD for drivers & cyclists for all turns; and pedestrians' visibility

 Possible effects of urban furniture elements & effects of their relocation

Evaluation

 Definition of observers' trajectories & points to be seen: observers' paths (SSD) and conflict points (ISD)

- Definition of eye height and lane/sidewalk position
 - --> Object and target location
- Distinct scenarios varying location of the bus stop-shelter

Evaluation

Comparison of ASD with SSD & ISD

$$SSD = 0.278 Vt + \frac{V^2}{245 \left[\left(\frac{a}{9.81} \right) \pm G \right]}$$

$$ISD = 0.28 V_{major} t_g$$

V → design speed (km/h)
t → brake reaction time (2.5 s)
a → deceleration rate (3.4 m/s)
G → road slope

Vmajor → design speed major road
(km/h)
tg → minor road vehicle time wrap (s)

Verification of clear sight triangles

Results: SSD

Values obtained with posted speed limit --> 40 km/h cars and 35 km/h cyclists

Observer	SSD (m) downward main road	SSD (m) upward minor road	SSD (m) downward minor road
Drivers	49.30	44.01	48.48
Cyclists	40.75	36.74	40.16

- SSD provisioned for observers downward main road & minimal effect of bus stop shelter on ASD
- Second turn not provisioned of SSD -> Horizontal curve
- SSD provisioned for observers downward minor road

Results: SSD

Second turn

Results: SSD

ASD of cyclists varies based on their lane positioning

Results: ISD

Diverging and merging conflict points provisioned – all observers
Bus stop prevents cyclists spot drivers 10-20 m before the stop sign
Departure sight triangle provisioned

Results: Pedestrians

Sightlines projected from pedestrians' path at approaching vehicles

Both types of pedestrians are able to spot oncoming traffic

5

0

10

15

Conclusions

- 3-D procedure enables realistic estimations of ASD
- Elements surrounding urban streets could affect overall visibility → the proposed approach allows evaluation of their positioning in terms of safety
- Importance of evaluating cyclists lane positioning → benefits of distinct trajectories
- Sight distances of mobility impaired pedestrians often obviated
 - Results showed good provisioning for case study; still these might vary given the shown effect of surrounding elements

Acknowledgements

Spanish Ministry of Economy and Competitiveness (MINECO) European Regional Development Fund (FEDER)

Research Project TRA2015-63579-R (MINECO/FEDER)

International Conference on Traffic and Transport Engineering ICTTE 2018

Evaluating 3-D sight distance at urban intersections using a LiDAR-based model and considering multiple users

Keila González-Gómez,¹ Luis Iglesias-Martínez,¹ Roberto Rodríguez-Solano,¹ María Castro¹

¹ Universidad Politécnica de Madrid

